首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4992篇
  免费   403篇
  国内免费   393篇
系统科学   36篇
丛书文集   114篇
教育与普及   20篇
理论与方法论   8篇
现状及发展   32篇
综合类   5578篇
  2024年   10篇
  2023年   85篇
  2022年   123篇
  2021年   131篇
  2020年   114篇
  2019年   95篇
  2018年   103篇
  2017年   173篇
  2016年   181篇
  2015年   232篇
  2014年   293篇
  2013年   199篇
  2012年   334篇
  2011年   367篇
  2010年   211篇
  2009年   273篇
  2008年   213篇
  2007年   299篇
  2006年   275篇
  2005年   230篇
  2004年   214篇
  2003年   182篇
  2002年   150篇
  2001年   141篇
  2000年   158篇
  1999年   138篇
  1998年   116篇
  1997年   94篇
  1996年   94篇
  1995年   94篇
  1994年   83篇
  1993年   79篇
  1992年   62篇
  1991年   52篇
  1990年   40篇
  1989年   57篇
  1988年   33篇
  1987年   32篇
  1986年   20篇
  1985年   8篇
排序方式: 共有5788条查询结果,搜索用时 31 毫秒
991.
为了改善改性钠基膨润土的性能,研发高效、环保的苯胺吸附材料,以钠基膨润土为原料,经过酸化、无机铝柱撑和阳离子表面活性剂改性后,制备了新型复合吸附剂。利用热失重分析、红外光谱分析、X-射线多晶衍射分析等对吸附剂进行结构表征;利用正交实验优化反应条件。研究结果表明:改性膨润土保持了钠基膨润土原有的硅酸盐层状结构,增大了层间距,改善了疏水性能,提高了体系的热稳定性;利用110CTAB-Al-Bt吸附1 000 mg?g-1苯胺模拟水样,振荡时间为70 min、pH值为11、温度为30 ℃、土的用量为1 g,吸附效果最好。  相似文献   
992.
利用直剪仪针对 6种不同垂直压力(25、50、75、100、125和150kPa)下的大豆粮堆,在0.6、1.0和1.2 mm/min 3种不同剪切速率条件下,进行了系统的试验研究,探讨了剪切速率和剪应力-剪位移曲线规律,分析了大豆粮堆的强度特性和内摩擦特性。结果表明:大豆粮堆剪切变形可分为线弹性阶段、应力强化阶段、颗粒压缩阶段。通过直剪试验测得大豆粮堆抗剪强度符合摩尔-库伦强度准则,大豆粮堆在25至150kPa垂直压力作用下,粘聚力随剪切速率的增大而减小,内摩擦角随剪切速率的增大而增大。在同种垂直压力下,剪切速率越大,剪应力增长越快,但最终会趋于一致。随着垂直压力的增加,大豆粮堆软化程度下降。  相似文献   
993.
摘 要: 砂卵石土粗粒含量对基坑及隧道围岩等稳定性影响较大,然而不同粗粒含量砂卵石土宏细观力学特性尚不明确。采用室内大型粗粒土三轴试验与数值三轴试验相结合的方法,对不同粗粒含量砂卵石土宏观及细观力学特性开展研究。研究结果表明:随着粗粒含量增加,砂卵石土的应力应变曲线表现为应变软化性;围压不变时,砂卵石土随着粗粒含量增加,应力峰值增大而达到峰值时的应变逐渐减小;建立了砂卵石土粗粒含量与内摩擦角和粘聚力等力学指标之间函数关系,随着粗粒含量的增加,砂卵石土的内摩擦角与粘聚力呈线性增大;提出了不同粗粒含量砂卵石土的接触模量、颗粒刚度比、摩擦系数、接触粘结强度等颗粒离散元细观参数。研究成果为砂卵石地层工程精细化设计及施工提供理论支撑。  相似文献   
994.
This article reports the effects of Sn on the inclusions as well as the mechanical properties and hot workability of ferritic stainless steel. Precipitation phases and inclusions in Sn-bearing ferritic stainless steel were observed, and the relationship between the workability and the microstructure of the steel was established. Energy-dispersive X-ray spectroscopic analysis of the steel reveals that an almost pure Sn phase forms and MnS-Sn compound inclusions appear in the steel with a higher Sn content. Little Sn segregation was observed in grain boundaries and in the areas around sulfide inclusions; however, the presence of Sn does not adversely affect the workability of the steel containing 0.4wt% Sn. When the Sn content is 0.1wt%-0.4wt%, Sn improves the tensile strength and the plastic strain ratio and also improves the plasticity with increasing temperature. A mechanism of improving the workability of ferritic stainless steel induced by Sn addition was discussed:the presence of Sn lowers the defect concentration in the ultra-pure ferritic lattice and the good distribution of tin in the lattice overcomes the problem of hot brittleness that occurs in low-carbon steel as a result of Sn segregation.  相似文献   
995.
This article reports the effects of stirring speed and T6 heat treatment on the microstructure and mechanical properties of Al-2024 alloy synthesized by a rheocasting process. There was a decrease in grain size of α-Al particles corresponding to an increase in stirring speed. By increasing the stirring speed, however, the globularity of matrix particles first increased and then declined. It was also found that the hardness, compressive strength, and compressive strain increased with the increase of stirring speed. Microstructural studies revealed the presence of nonsoluble Al15(CuFeMn)3Si2 phase in the vicinity of CuAl2 in the rheocast samples. The required time for the solution treatment stage was also influenced by stirring speed; the solution treatment time decreased with the increase in stirring speed. Furthermore, the rheocast samples required a longer homogenization period compared to conventionally wrought alloys. Improvements in hardness and compressive properties were observed after T6 heat treatment.  相似文献   
996.
A new environment-friendly free-cutting steel alloyed with elemental Sn (Y20Sn) was developed to meet the requirements of machinability and mechanical properties according to GB/T8731-1988. The machinability of the steel is enhanced by the segregation of elemental Sn at grain boundaries. The effect of Sn segregation on intergranular brittle fracture at normal cutting temperature from 250℃ to 400℃ is confirmed. The formation mechanism of main inclusions MnS is influenced by the presence of Sn and the attachment of Sn around MnS itself as a surfactant, and this mechanism also explains the improvement in machinability and mechanical properties of the steel. In the steel, the relevant inclusions are mainly spherical or axiolitic, and are uniformly distributed in small volume. Such inclusions improve the machinability of the steel and do not impair the mechanical properties as well. Experimental results demonstrate that the appropriate content of Sn in the steel is 0.03wt% to 0.08wt%, and the remaining composition is close to that of standard Y20 steel.  相似文献   
997.
A two-step equal channel angular extrusion (ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains (~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.  相似文献   
998.
The fatigue behavior under load control and the mechanical properties of commercial 2011 aluminum as an age-hardenable Al alloy was studied. To estimate the effects of the equal channel angular pressing (ECAP) process, solution heat treatments, and aging on the fatigue life, tests were conducted at four different stages:furnace cooling; furnace cooling plus one ECAP pass; solid solution heat treatment, quenching, one ECAP pass plus aging at peak age level; and the T6 condition. Only one pass was possible at room temperature because of the high strength of the material. The fracture surface morphology and microstructure after fatigue were evaluated by scanning electron microscopy (SEM). The experimental results revealed that the optimum fatigue life under load control, the tensile strength, and the Vickers hardness of the material were interdependent. The optimum fatigue life under load control was achieved by increasing the tensile strength and hardness of the material.  相似文献   
999.
Using tellurium as a solvent, we grew ZnTe ingots of 30 mm in diameter and 70 mm in length by a temperature gradient solution growth method. Hall tests conducted at 300 K indicated that the as-grown ZnTe exhibits p-type conductivity, with a carrier concentration of approximately 1014 cm-3, a mobility of approximately 300 cm2·V-1·s-1, and a resistivity of approximately 102 Ω·cm. A simple and effective method was proposed for chemical surface texturization of ZnTe using an HF:H2O2:H2O etchant. Textures with the sizes of approximately 1 μm were produced on {100}, {110}, and {111}Zn surfaces after etching. The etchant is also very promising in crystal characterization because of its strong anisotropic character and Te-phase selectivity.  相似文献   
1000.
SA508-Ⅲ steel was charged with different hydrogen (H) contents using a high-pressure thermal charging method to study the effects of H content on the tensile properties and evaluate the H embrittlement behavior of the steel. The results indicate that the ultimate tensile strength remains nearly unchanged with the addition of H. In contrast, the yielding strength slightly increases, and the elongation significantly decreases with increasing H content, especially at concentrations exceeding 5.6×10-6. On the basis of fractographic analysis, it is clear that the addition of H changes the fracture mode from microvoid coalescence to a mixture of river patterns and dimples. Carbides are strong traps for H; thus, the H atoms easily migrate in the form of Cottrell atmosphere toward the carbides following moving dislocations during tensile deformation. In addition, stress-induced H atoms accumulate at the interface between carbides and the matrix after necking under three-dimensional stress, which weakens the interfacial bonding force. Consequently, when the local H concentration reaches a critical value, microcracks occur at the interface, resulting in fracture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号